Towards an Automatic System to Spindle Faults Detection

Cristina Villagómez Garzón, George Batallas Moncayo, Diana Hernández Alcántara, Juan Carlos Tudón Martínez, Ruben Morales-Menendez

Producción científicarevisión exhaustiva

1 Cita (Scopus)

Resumen

The diagnosis of faults has allowed to evolve the maintenance strategies in the industries, optimizing the production stops. In the case of machining systems, timely fault diagnosis avoids products that are out of specification and/or extreme damage. Optimum machining is highly dependent on the performance and condition of the spindle, within which the bearing system represents the mechanical components with the greatest likelihood of failure. The advances in the use of the Wavelet Transform (WT) was analyzed and a fault detection method for spindles was proposed. This method automatically detects the frequency range where most information of the fault is located and separates it from other noisy frequencies. Furthermore, faults can be detected at early stages. Early results, validated with experimental data, are promising for an automatic system.

Idioma originalEnglish
Páginas (desde-hasta)1425-1430
Número de páginas6
PublicaciónIFAC-PapersOnLine
Volumen51
N.º24
DOI
EstadoPublished - 1 ene 2018

All Science Journal Classification (ASJC) codes

  • Ingeniería de control y sistemas

Huella

Profundice en los temas de investigación de 'Towards an Automatic System to Spindle Faults Detection'. En conjunto forman una huella única.

Citar esto