Signal and Texture Features from T2 Maps for the Prediction of Mild Cognitive Impairment to Alzheimer’s Disease Progression

Alejandro I. Trejo-Castro, Ricardo A. Caballero-Luna, José A. Garnica-López, Fernando Vega-Lara, Antonio Martinez-Torteya

Resultado de la investigaciónrevisión exhaustiva

Resumen

Early detection of Alzheimer’s disease (AD) is crucial to preserve cognitive functions and provide the opportunity for patients to enter clinical trials. In recent years, some studies have reported that features related to the signal and texture of MRI images can be an effective biomarker of AD. To test these claims, a study was conducted using T2 maps, a sequence not previously studied, of 40 patients with mild cognitive impairment (MCI) from the Alzheimer’s Disease Neuroimaging Initiative database, who either progressed to AD (18) or remained stable (22). From these maps, the mean value and absolute difference of 37 signal and texture imaging features for 40 contralateral pairs of regions were measured. We used seven machine learning methods to analyze whether, by adding these imaging features to the neuropsychological studies currently used for diagnosis, we could more accurately identify patients who will progress to AD. The predictive models improved with the addition of signal and texture features. Additionally, features related to the signal and texture of the images were much more relevant than volumetric ones. Our results suggest that contralateral signal and texture features should be further investigated as potential biomarkers for the prediction of AD.
Idioma originalEnglish
Número de artículo941
Páginas (desde-hasta)941
PublicaciónHealthcare
Volumen9
N.º8
DOI
EstadoPublished - ago 2021

Nota bibliográfica

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Informática aplicada a la salud
  • Políticas sanitarias
  • Gestión de información sanitaria
  • Liderazgo y gestión

Huella

Profundice en los temas de investigación de 'Signal and Texture Features from T2 Maps for the Prediction of Mild Cognitive Impairment to Alzheimer’s Disease Progression'. En conjunto forman una huella única.

Citar esto