Portfolio performance of linear SDF models: an out-of-sample assessment

Martín Carlos Lozano Banda, Edwin Hansen, Massimo Guidolin

Resultado de la investigaciónrevisión exhaustiva

Resumen

We evaluate linear stochastic discount factor models using an ex-post portfolio metric: the realized out-of-sample Sharpe ratio of mean–variance portfolios backed by alternative linear factor models. Using a sample of monthly US portfolio returns spanning the period 1968–2016, we find evidence that multifactor linear models have better empirical properties than the CAPM, not only when the cross-section of expected returns is evaluated in-sample, but also when they are used to inform one-month ahead portfolio selection. When we compare portfolios associated to multifactor models with mean–variance decisions implied by the single-factor CAPM, we document statistically significant differences in Sharpe ratios of up to 10 percent. Linear multifactor models that provide the best in-sample fit also yield the highest realized Sharpe ratios.
Idioma originalEnglish
Páginas (desde-hasta)1425-1436
Número de páginas12
PublicaciónQuantitative Finance
Volumen18
N.º8
DOI
EstadoPublished - 3 ago 2018

All Science Journal Classification (ASJC) codes

  • Finance
  • Economics, Econometrics and Finance(all)

Huella Profundice en los temas de investigación de 'Portfolio performance of linear SDF models: an out-of-sample assessment'. En conjunto forman una huella única.

Citar esto