On sequences of Hurwitz polynomials related to orthogonal polynomials

Noé Martínez, Luis E. Garza*, Baltazar Aguirre-Hernández

*Autor correspondiente de este trabajo

Producción científicarevisión exhaustiva

6 Citas (Scopus)

Resumen

In this contribution, we explore the well-known connection between Hurwitz and orthogonal polynomials. Namely, given a Hurwitz polynomial, it is shown that it can be decomposed into two parts: a polynomial that is orthogonal with respect to some positive measure supported in the positive real axis and its corresponding second-kind polynomial. Conversely, given a sequence of orthogonal polynomials with respect to a positive measure supported in the positive real axis, a sequence of Hurwitz polynomials can be constructed. Based on that connection, we construct sequences of Hurwitz polynomials that satisfy a recurrence relation, in a similar way as the orthogonal polynomials do. Even more, we present a way to construct families of Hurwitz polynomials using two sequences of parameters and a recurrence relation that constitutes an analogue of Favard's theorem in the theory of orthogonal polynomials.

Idioma originalEnglish
Páginas (desde-hasta)2191-2208
Número de páginas18
PublicaciónLinear and Multilinear Algebra
Volumen67
N.º11
DOI
EstadoPublished - 2 nov 2019
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

All Science Journal Classification (ASJC) codes

  • Álgebra y teoría de números

Huella

Profundice en los temas de investigación de 'On sequences of Hurwitz polynomials related to orthogonal polynomials'. En conjunto forman una huella única.

Citar esto