On computational aspects of discrete Sobolev inner products on the unit circle

Kenier Castillo, Lino G. Garza, Francisco Marcellán

Resultado de la investigación

1 Cita (Scopus)

Resumen

In this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.
Idioma originalEnglish
Páginas (desde-hasta)452-460
Número de páginas9
PublicaciónApplied Mathematics and Computation
DOI
EstadoPublished - 17 sep 2013
Publicado de forma externa

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Applied Mathematics

Huella Profundice en los temas de investigación de 'On computational aspects of discrete Sobolev inner products on the unit circle'. En conjunto forman una huella única.

  • Citar esto