Intelligent Fault Diagnosis for Rotating Machines Using Deep Learning

Jorge Chuya Sumba, Israel Ruiz Quinde, Luis Escajeda Ochoa, Juan Carlos Tudón Martínez, Antonio J. Vallejo Guevara, Ruben Morales-Menendez

Resultado de la investigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

The diagnosis of failures in high-speed machining centers and other rotary machines is critical in manufacturing systems, because early detection can save a representative amount of time and cost. Fault diagnosis systems generally have two blocks: feature extraction and classification. Feature extraction affects the performance of the prediction model, and essential information is extracted by identifying high-level abstract and representative characteristics. Deep learning (DL) provides an effective way to extract the characteristics of raw data without prior knowledge, compared with traditional machine learning (ML) methods. A feature learning approach was applied using one-dimensional (1-D) convolutional neural networks (CNN) that works directly with raw vibration signals. The network structure consists of small convolutional kernels to perform a nonlinear mapping and extract features; the classifier is a softmax layer. The method has achieved satisfactory performance in terms of prediction accuracy that reaches ∼99 % and ∼97 % using a standard bearings database: the processing time is suitable for real-time applications with ∼8 ms per signal, and the repeatability has a low standard deviation <2 % and achieves an acceptable network generalization capability.

Idioma originalEnglish
Páginas (desde-hasta)27-40
Número de páginas14
PublicaciónSmart and Sustainable Manufacturing Systems
Volumen3
N.º2
DOI
EstadoPublished - 1 feb 2019

All Science Journal Classification (ASJC) codes

  • Informática aplicada
  • Ingeniería de control y sistemas
  • Ingeniería industrial y de fabricación

Huella

Profundice en los temas de investigación de 'Intelligent Fault Diagnosis for Rotating Machines Using Deep Learning'. En conjunto forman una huella única.

Citar esto