Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case

Edinson Fuentes, Luis E. Garza*

*Autor correspondiente de este trabajo

Producción científicarevisión exhaustiva

Resumen

In this contribution, we extend the concept of coherent pair for two quasi-definite matrix linear functionals u0 and u1. Necessary and sufficient conditions for these functionals to constitute a coherent pair are determined, when one of them satisfies a matrix Pearson-type equation. Moreover, we deduce algebraic properties of the matrix orthogonal polynomials associated with the Sobolev-type inner product 〈p,q〉s=〈p,q〉u0+〈pM1,qM2u1, where M1 and M2 are m×m non-singular matrices and p,q are matrix polynomials.

Idioma originalEnglish
Número de artículo126674
PublicaciónJournal of Mathematical Analysis and Applications
Volumen518
N.º1
DOI
EstadoPublished - 1 feb 2023
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2022 Elsevier Inc.

All Science Journal Classification (ASJC) codes

  • Análisis
  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'Coherent pairs and Sobolev-type orthogonal polynomials on the real line: An extension to the matrix case'. En conjunto forman una huella única.

Citar esto