Assessing Potential Heteroscedasticity in Psychological Data: A GAMLSS approach

Juan C Correa, Thomas Kneib, Ospina Raydonal, Julian Tejada, Fernando Marmolejo-Ramos

Producción científicarevisión exhaustiva

Resumen

This paper provides a tutorial for analyzing psychological research data with GAMLSS, an R package that uses the family of generalized additive models for location, scale, and shape. These models extend the capacities of traditional parametric and non-parametric tools that primarily rely on the first moment of the statistical distribution. When psychological data fails the assumption of homoscedasticity, the GAMLSS approach might yield less biased estimates while offering more insights about the data when considering sources of heteroscedasticity. The supplemental material and data help newcomers understand the implementation of this approach in a straightforward step-by-step procedure.
Idioma originalEnglish
Páginas (desde-hasta)331-344
Número de páginas14
PublicaciónThe Quantitative Methods for Psychology
Volumen19
N.º4
DOI
EstadoPublished - 3 dic 2023

Huella

Profundice en los temas de investigación de 'Assessing Potential Heteroscedasticity in Psychological Data: A GAMLSS approach'. En conjunto forman una huella única.

Citar esto