A canonical Geronimus transformation for matrix orthogonal polynomials

Juan Carlos García-Ardila, Luis E. Garza*, Francisco Marcellán

*Autor correspondiente de este trabajo

Producción científicarevisión exhaustiva

5 Citas (Scopus)

Resumen

We consider matrix polynomials orthogonal with respect to a sesquilinear form (Formula presented.) such that (Formula presented.) where µ is a symmetric, positive definite matrix of measures supported in some infinite subset J of the real line, and W(t) is a matrix polynomial of degree 1. We obtain a connection formula between the sequences of matrix polynomials orthogonal with respect to [·, ·]W and µ, as well as a relation between the corresponding block Jacobi matrices. A non-symmetric sesquilinear form is also considered.

Idioma originalEnglish
Páginas (desde-hasta)357-381
Número de páginas25
PublicaciónLinear and Multilinear Algebra
Volumen66
N.º2
DOI
EstadoPublished - 1 feb 2018
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2017 Informa UK Limited, trading as Taylor & Francis Group.

All Science Journal Classification (ASJC) codes

  • Álgebra y teoría de números

Huella

Profundice en los temas de investigación de 'A canonical Geronimus transformation for matrix orthogonal polynomials'. En conjunto forman una huella única.

Citar esto