Abstract
Alzheimer's disease (AD) is the most common type of dementia and predicting who will convert from Mild Cognitive Impairment (MCI) to AD is crucial to patient benefits as well as medical research. To fulfill this purpose, in recent years it has been reported that the texture of magnetic resonance images can be an effective biomarker. In this study we used images from the Alzheimer's Disease Neuroimaging Initiative database to create T2 maps and identify features related to the texture and signal distribution for the prediction of AD. We extracted 3S features from the left and right hippocampus for 40 patients with MCI who either progressed to AD (18) or remained stable (22) and measured the mean and absolute difference of these contralateral features. We also kept the original volume of each region, yielding a total of 7S features. We used 7 machine learning methods to analyze whether by adding these imaging features to the neuropsychological studies currently used for diagnosis, we could more accurately identify who would develop the disease. We found 11 features significantly different between groups. Furthermore, all but one of the machine learning methods improved their accuracy by adding the signal- and texture-related features, and the volumetric information was non-significant. Our results suggest that these imaging features from hippocampal T2 maps should be further investigated as potential MRI biomarkers for the prediction of AD.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 |
Editors | Taesung Park, Young-Rae Cho, Xiaohua Tony Hu, Illhoi Yoo, Hyun Goo Woo, Jianxin Wang, Julio Facelli, Seungyoon Nam, Mingon Kang |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 772-777 |
Number of pages | 6 |
ISBN (Electronic) | 9781728162157 |
ISBN (Print) | 9781728162157 |
DOIs | |
Publication status | Published - 16 Dec 2020 |
Event | 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 - Virtual, Seoul, Korea, Republic of Duration: 16 Dec 2020 → 19 Dec 2020 |
Publication series
Name | Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 |
---|
Conference
Conference | 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 |
---|---|
Country/Territory | Korea, Republic of |
City | Virtual, Seoul |
Period | 16/12/20 → 19/12/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Information Systems and Management
- Medicine (miscellaneous)
- Health Informatics