Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning

Fernando De la Garza Salazar, Maria Elena Romero Ibarguengoitia, José Ramón Azpiri López, Arnulfo González Cantú

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Background Left ventricular hypertrophy detected by echocardiography (Echo-LVH) is an independent predictor of mortality. Integration of the Philips DXL-16 algorithm into the electrocardiogram (ECG) extensively analyses the electricity of the heart. Machine learning techniques such as the C5.0 could lead to a new decision tree criterion to detect Echo-LVH. Objectives To search for a new combination of ECG parameters predictive of Echo-LVH. The final model is called the Cardiac Hypertrophy Computer-based model (CHCM). Methods We extracted the 458 ECG parameters provided by the Philips DXL-16 algorithm in patients with Echo-LVH and controls. We used the C5.0 ML algorithm to train, test, and validate the CHCM. We compared its diagnostic performance to validate state-of-the-art criteria in our patient cohort. Results We included 439 patients and considered an alpha value of 0.05 and a power of 99%. The CHCM includes T voltage in I (≤0.055 mV), peak-to-peak QRS distance in aVL (>1.235 mV), and peak-to-peak QRS distance in aVF (>0.178 mV). The CHCM had an accuracy of 70.5% (CI95%, 65.2-75.5), a sensitivity of 74.3%, and a specificity of 68.7%. In the external validation cohort (n = 156), the CHCM had an accuracy of 63.5% (CI95%, 55.4-71), a sensitivity of 42%, and a specificity of 82.9%. The accuracies of the most relevant state-of-the-art criteria were: Romhilt-Estes (57.4%, CI95% 49-65.5), VDP Cornell (55.7%, CI95%47.6-63.7), Cornell (59%, CI95%50.8-66.8), Dalfó(62.9%, CI95%54.7-70.6), Sokolow Lyon (53.9%, CI95%45.7-61.9), and Philips DXL-16 algorithm (54.5%, CI95%46.3-62.5). Conclusion ECG computer-based data and the C5.0 determined a new set of ECG parameters to predict Echo-LVH. The CHCM classifies patients as Echo-LVH with repolarization abnormalities or LVH with increased voltage. The CHCM has a similar accuracy, and is slightly more sensitive than the state-of-the-art criteria.

Original languageEnglish
Article numbere0260661
Pages (from-to)e0260661
JournalPLoS One
Volume16
Issue number11
DOIs
Publication statusPublished - 30 Nov 2021

Bibliographical note

Publisher Copyright:
© 2021 De la Garza Salazar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning'. Together they form a unique fingerprint.

Cite this