Abstract
In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product 〈p,q〉1=∫Rp(x)q(x)e-x4dx+M0p(0)q(0)+M1p′(0)q′(0),where p, q are polynomials, M and M 1 are nonnegative real numbers. Connection formulas between these polynomials and Freud polynomials are deduced and, as an application, an algorithm to compute their zeros is presented. The location of their zeros as well as their asymptotic behavior is studied. Finally, an electrostatic interpretation of them in terms of a logarithmic interaction in the presence of an external field is given.
Original language | English |
---|---|
Pages (from-to) | 505-528 |
Number of pages | 24 |
Journal | Afrika Matematika |
Volume | 30 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 1 Jun 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019, African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature.
All Science Journal Classification (ASJC) codes
- Mathematics(all)