New Observations and Studies of Saturn's Long-Lived North Polar SPOT

Agustin Sanchez-Lavega, Jose Félix Rojas, Juan Ramón Acarreta, Jean Lecacheux, François Colas, Pedro V. Sada

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


We report on a new series of ground-based CCD observations at visual wavelengths, covering a period of 1255 days between May 1992 and November 1995, of the longest-lived asymmetric feature known in Saturn's atmosphere: the north polar spot (NPS). This completes our previous analysis of this feature during the period 1990-1991 (A. Sanchez-Lavega, J. Lecacheux, F. Colas, and P. Lagues, 1993,Science260,329-332). Longitude measurements of the NPS indicate an averaged longitudinal drift of -0.030 deg/day for the whole period 1990-1995 corresponding to a zonal velocity of 0.11 msec-1. These data, when combined with previous and new measurements of the NPS position on Voyager 1 and 2 images obtained in 1980 and 1981, indicate a long-term drift in longitude of the NPS with a constant angular acceleration of 1.1 × 10-5deg/(day)2. High-resolution Voyager 2 violet, blue, green, and orange images were used to measure the size and reflectivity of the NPS. Its structure is characterized by a bright elliptical core surrounded by a dark ring and a large uniform area. The contrast between all these features changes appreciably from violet to orange: the spot is dark in violet but bright in orange relative to its surroundings. The spot is embedded within a region seeded by a “field of bright clouds” with characteristic size 1000 km reminiscent of a cellular convection pattern. The NPS's east-west apparent size is shorter at violet-blue (about 7000 km as limited by a dark ring at these wavelengths) than at green-orange (about 11,000 km corresponding to the large uniform area). Green processed images show apparent spiral patterns within the NPS consistent with anticyclonic vorticity. The results of ground-based photometry of the north polar region (NPR) and the NPS in the red methane absorption bands and their adjacent continuum are consistent with a radiative transfer model of the cloud vertical structure consisting of a clear gas layer, a haze layer, and a semi-infinite cloud. In the context of this model the NPS cloud tops are slightly higher than neighboring clouds reaching a pressure level of 45 mbar. Calculations of the seasonal insolation at the north pole, together with a simple linear radiative response of the atmosphere to this heating at different altitudes, suggest temperature changes at the level of the NPS cloud tops which should influence the NPS dynamics. Because of the long lifetime of the NPS, and because its motions did not vary appreciably during the long observing period, we suggest that the main properties and dynamics of the NPS are insensitive to the external solar forcing.
Original languageEnglish
Pages (from-to)322-334
Issue number2
Publication statusPublished - 1 Aug 1997
Externally publishedYes


Dive into the research topics of 'New Observations and Studies of Saturn's Long-Lived North Polar SPOT'. Together they form a unique fingerprint.

Cite this