Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis

Luis Ángel Ibarra-Sánchez, Ana Gámez-Méndez, Manuel Martínez-Ruiz, Erik Francisco Nájera-Martínez, Brando Alan Morales-Flores, Elda M Melchor-Martínez, Juan Eduardo Sosa-Hernández, Roberto Parra-Saldívar, Hafiz M N Iqbal

Research output: Contribution to journalReview articlepeer-review

10 Citations (Scopus)

Abstract

Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.

Original languageEnglish
Article number103219
Pages (from-to)103219
JournalJournal of Drug Delivery Science and Technology
Volume70
DOIs
Publication statusPublished - Apr 2022

Bibliographical note

Funding Information:
This research was supported by Consejo Nacional de Ciencia y Tecnología ( CONACYT ) master fellowship No. 1078456 awarded to author L. A. I–S. This work was also partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) under Sistema Nacional de Investigadores (SNI) program awarded to Manuel Martínez-Ruiz (CVU: 418151), Elda M. Melchor-Martínez (CVU: 230784), Juan Eduardo Sosa-Hernández (CVU: 375202), Roberto Parra-Saldívar (CVU: 35753) and Hafiz M.N. Iqbal (CVU: 735340). Figures were created with BioRender.com .

Funding Information:
This research was supported by Consejo Nacional de Ciencia y Tecnolog?a (CONACYT) master fellowship No. 1078456 awarded to author L. A. I?S. This work was also partially supported by Consejo Nacional de Ciencia y Tecnolog?a (CONACYT) under Sistema Nacional de Investigadores (SNI) program awarded to Manuel Mart?nez-Ruiz (CVU: 418151), Elda M. Melchor-Mart?nez (CVU: 230784), Juan Eduardo Sosa-Hern?ndez (CVU: 375202), Roberto Parra-Sald?var (CVU: 35753) and Hafiz M.N. Iqbal (CVU: 735340). Figures were created with BioRender.com.

Publisher Copyright:
© 2022 Elsevier B.V.

Fingerprint

Dive into the research topics of 'Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis'. Together they form a unique fingerprint.

Cite this