Global chassis control system using suspension, steering, and braking subsystems

Carlos A. Vivas-Lopez, Juan C. Tudon-Martinez, Diana Hernandez-Alcantara, Ruben Morales-Menendez

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

A novel Global Chassis Control (GCC) system based on a multilayer architecture with three levels: top: decision layer, middle: control layer, and bottom: system layer is presented. The main contribution of this work is the development of a data-based classification and coordination algorithm, into a single control problem. Based on a clustering technique, the decision layer classifies the current driving condition. Afterwards, heuristic rules are used to coordinate the performance of the considered vehicle subsystems (suspension, steering, and braking) using local controllers hosted in the control layer. The control allocation system uses fuzzy logic controllers. The performance of the proposed GCC system was evaluated under different standard tests. Simulation results illustrate the effectiveness of the proposed system compared to an uncontrolled vehicle and a vehicle with a noncoordinated control. The proposed system decreases by 14% the braking distance in the hard braking test with respect to the uncontrolled vehicle, the roll and yaw movements are reduced by 10% and 12%, respectively, in the Double Line Change test, and the oscillations caused by load transfer are reduced by 7% in a cornering situation.

Original languageEnglish
Article number263424
JournalMathematical Problems in Engineering
Volume2015
DOIs
Publication statusPublished - 1 Jan 2015

All Science Journal Classification (ASJC) codes

  • General Mathematics
  • General Engineering

Fingerprint

Dive into the research topics of 'Global chassis control system using suspension, steering, and braking subsystems'. Together they form a unique fingerprint.

Cite this