Fault estimation methods for semi-active suspension systems

Diana Hernandez-Alcantara, Ruben Morales-Menendez, Luis Amezquita-Brooks, Olivier Sename, Luc Dugard

Research output: Contribution to conferencePaper

2 Citations (Scopus)

Abstract

© 2015 IEEE. Semi-Active suspension systems aim to improve the stability and comfort of vehicles. Although, they offer better performance than passive suspensions, the actuators such as magneto-rheological dampers are more susceptible to failure. Oil leakage is the most common fault, and its effect is a reduction of the damping force. The estimation of suspension faults can be used with a Fault Tolerant Control system to prevent handling and comfort deterioration. However, fault estimation schemes introduce additional challenges due to the damper non-linear dynamics and the strong influence of the disturbances (i.e the road profile). One of the first obstacles for appropriate damper fault detection is the modeling of the fault, which has been shown to be of multiplicative nature. However, many of the most widespread fault detection schemes consider additive faults due to mathematical convenience. Two model-based fault estimation schemes for semi-active dampers are proposed: an observer-based approach, which is intended to estimate additive faults; and a parameter identification approach, which is intended to estimate multiplicative faults. The performance of these schemes is validated and compared through simulations using a commercial vehicle model. Early results shows that a parameter identification approach is more accurate in fault estimation, whereas an observer-based approach is less sensible to parametric uncertainty.
Original languageEnglish
DOIs
Publication statusPublished - 29 Jan 2016
Externally publishedYes
Event2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015 -
Duration: 29 Jan 2016 → …

Conference

Conference2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015
Period29/1/16 → …

Fingerprint

Active suspension systems
Fault detection
Identification (control systems)
Commercial vehicles
Deterioration
Actuators
Damping
Control systems

Cite this

Hernandez-Alcantara, D., Morales-Menendez, R., Amezquita-Brooks, L., Sename, O., & Dugard, L. (2016). Fault estimation methods for semi-active suspension systems. Paper presented at 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, . https://doi.org/10.1109/ROPEC.2015.7395138
Hernandez-Alcantara, Diana ; Morales-Menendez, Ruben ; Amezquita-Brooks, Luis ; Sename, Olivier ; Dugard, Luc. / Fault estimation methods for semi-active suspension systems. Paper presented at 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, .
@conference{b936dc13904d48c1b9b6e84cc01bde38,
title = "Fault estimation methods for semi-active suspension systems",
abstract = "{\circledC} 2015 IEEE. Semi-Active suspension systems aim to improve the stability and comfort of vehicles. Although, they offer better performance than passive suspensions, the actuators such as magneto-rheological dampers are more susceptible to failure. Oil leakage is the most common fault, and its effect is a reduction of the damping force. The estimation of suspension faults can be used with a Fault Tolerant Control system to prevent handling and comfort deterioration. However, fault estimation schemes introduce additional challenges due to the damper non-linear dynamics and the strong influence of the disturbances (i.e the road profile). One of the first obstacles for appropriate damper fault detection is the modeling of the fault, which has been shown to be of multiplicative nature. However, many of the most widespread fault detection schemes consider additive faults due to mathematical convenience. Two model-based fault estimation schemes for semi-active dampers are proposed: an observer-based approach, which is intended to estimate additive faults; and a parameter identification approach, which is intended to estimate multiplicative faults. The performance of these schemes is validated and compared through simulations using a commercial vehicle model. Early results shows that a parameter identification approach is more accurate in fault estimation, whereas an observer-based approach is less sensible to parametric uncertainty.",
author = "Diana Hernandez-Alcantara and Ruben Morales-Menendez and Luis Amezquita-Brooks and Olivier Sename and Luc Dugard",
year = "2016",
month = "1",
day = "29",
doi = "10.1109/ROPEC.2015.7395138",
language = "English",
note = "2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015 ; Conference date: 29-01-2016",

}

Hernandez-Alcantara, D, Morales-Menendez, R, Amezquita-Brooks, L, Sename, O & Dugard, L 2016, 'Fault estimation methods for semi-active suspension systems' Paper presented at 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, 29/1/16, . https://doi.org/10.1109/ROPEC.2015.7395138

Fault estimation methods for semi-active suspension systems. / Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis; Sename, Olivier; Dugard, Luc.

2016. Paper presented at 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, .

Research output: Contribution to conferencePaper

TY - CONF

T1 - Fault estimation methods for semi-active suspension systems

AU - Hernandez-Alcantara, Diana

AU - Morales-Menendez, Ruben

AU - Amezquita-Brooks, Luis

AU - Sename, Olivier

AU - Dugard, Luc

PY - 2016/1/29

Y1 - 2016/1/29

N2 - © 2015 IEEE. Semi-Active suspension systems aim to improve the stability and comfort of vehicles. Although, they offer better performance than passive suspensions, the actuators such as magneto-rheological dampers are more susceptible to failure. Oil leakage is the most common fault, and its effect is a reduction of the damping force. The estimation of suspension faults can be used with a Fault Tolerant Control system to prevent handling and comfort deterioration. However, fault estimation schemes introduce additional challenges due to the damper non-linear dynamics and the strong influence of the disturbances (i.e the road profile). One of the first obstacles for appropriate damper fault detection is the modeling of the fault, which has been shown to be of multiplicative nature. However, many of the most widespread fault detection schemes consider additive faults due to mathematical convenience. Two model-based fault estimation schemes for semi-active dampers are proposed: an observer-based approach, which is intended to estimate additive faults; and a parameter identification approach, which is intended to estimate multiplicative faults. The performance of these schemes is validated and compared through simulations using a commercial vehicle model. Early results shows that a parameter identification approach is more accurate in fault estimation, whereas an observer-based approach is less sensible to parametric uncertainty.

AB - © 2015 IEEE. Semi-Active suspension systems aim to improve the stability and comfort of vehicles. Although, they offer better performance than passive suspensions, the actuators such as magneto-rheological dampers are more susceptible to failure. Oil leakage is the most common fault, and its effect is a reduction of the damping force. The estimation of suspension faults can be used with a Fault Tolerant Control system to prevent handling and comfort deterioration. However, fault estimation schemes introduce additional challenges due to the damper non-linear dynamics and the strong influence of the disturbances (i.e the road profile). One of the first obstacles for appropriate damper fault detection is the modeling of the fault, which has been shown to be of multiplicative nature. However, many of the most widespread fault detection schemes consider additive faults due to mathematical convenience. Two model-based fault estimation schemes for semi-active dampers are proposed: an observer-based approach, which is intended to estimate additive faults; and a parameter identification approach, which is intended to estimate multiplicative faults. The performance of these schemes is validated and compared through simulations using a commercial vehicle model. Early results shows that a parameter identification approach is more accurate in fault estimation, whereas an observer-based approach is less sensible to parametric uncertainty.

U2 - 10.1109/ROPEC.2015.7395138

DO - 10.1109/ROPEC.2015.7395138

M3 - Paper

ER -

Hernandez-Alcantara D, Morales-Menendez R, Amezquita-Brooks L, Sename O, Dugard L. Fault estimation methods for semi-active suspension systems. 2016. Paper presented at 2015 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2015, . https://doi.org/10.1109/ROPEC.2015.7395138