Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power

Irma N. Angulo-Sherman, Marisol Rodríguez-Ugarte, Nadia Sciacca, Eduardo Iáñez, José M. Azorín

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

© 2017 The Author(s). Background: Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. Methods: A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare μ and β band power when a specific current density is provided against the case of supplying no stimulation. Results: The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. Conclusions: The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.
Original languageEnglish
JournalJournal of NeuroEngineering and Rehabilitation
DOIs
Publication statusPublished - 19 Apr 2017
Externally publishedYes

Fingerprint

Imagery (Psychotherapy)
Motor Cortex
Cerebellum
Hand
Foot
Transcranial Direct Current Stimulation
Power (Psychology)
Brain-Computer Interfaces
Brain
Analysis of Variance
Healthy Volunteers
Observation

All Science Journal Classification (ASJC) codes

  • Rehabilitation
  • Health Informatics

Cite this

@article{c752727b8a9d4a388a62099f6cd882c7,
title = "Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power",
abstract = "{\circledC} 2017 The Author(s). Background: Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. Methods: A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare μ and β band power when a specific current density is provided against the case of supplying no stimulation. Results: The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. Conclusions: The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.",
author = "Angulo-Sherman, {Irma N.} and Marisol Rodr{\'i}guez-Ugarte and Nadia Sciacca and Eduardo I{\'a}{\~n}ez and Azor{\'i}n, {Jos{\'e} M.}",
year = "2017",
month = "4",
day = "19",
doi = "10.1186/s12984-017-0242-1",
language = "English",
journal = "Journal of NeuroEngineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",

}

Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power. / Angulo-Sherman, Irma N.; Rodríguez-Ugarte, Marisol; Sciacca, Nadia; Iáñez, Eduardo; Azorín, José M.

In: Journal of NeuroEngineering and Rehabilitation, 19.04.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power

AU - Angulo-Sherman, Irma N.

AU - Rodríguez-Ugarte, Marisol

AU - Sciacca, Nadia

AU - Iáñez, Eduardo

AU - Azorín, José M.

PY - 2017/4/19

Y1 - 2017/4/19

N2 - © 2017 The Author(s). Background: Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. Methods: A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare μ and β band power when a specific current density is provided against the case of supplying no stimulation. Results: The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. Conclusions: The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.

AB - © 2017 The Author(s). Background: Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. Methods: A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p <0.001) are used to detect significant differences between classification accuracies that are obtained with different current densities. For tDCS modalities that improved accuracy, t-tests (p <0.05) are used to compare μ and β band power when a specific current density is provided against the case of supplying no stimulation. Results: The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. Conclusions: The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.

U2 - 10.1186/s12984-017-0242-1

DO - 10.1186/s12984-017-0242-1

M3 - Article

JO - Journal of NeuroEngineering and Rehabilitation

JF - Journal of NeuroEngineering and Rehabilitation

SN - 1743-0003

ER -