CTA sensitivity for probing cosmology and fundamental physics with gamma rays

CTA Consortium Collaboration

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Cherenkov Telescopic Array (CTA), the next-generation ground-based gamma-ray observatory, will have unprecedented sensitivity, providing answers to open questions in gamma-ray cosmology and fundamental physics. Using simulations of active galactic nuclei observations foreseen in the CTA Key Science Program, we find that CTA will measure gamma-ray absorption on the extragalactic background light with a statistical error below 15% up to the redshift of 2 and detect or establish limits on gamma halos induced by the intergalactic magnetic field of at least 0.3 pG. Extragalactic observations using CTA also demonstrate the potential for testing physics beyond the Standard Model. The best state-of-the-art constraints on the Lorentz invariance violation from astronomical gamma-ray observations will be improved at least two- to threefold. CTA will also probe the parameter space where axion-like particles can represent a significant proportion – if not all – of dark matter. Joint multiwavelength and multimessenger observations, carried out together with other future observatories, will further foster the growth of gamma-ray cosmology.

Original languageEnglish
Title of host publicationCTA sensitivity for probing cosmology and fundamental physics with gamma rays
Volume395
Publication statusPublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

Publication series

NameProceedings of Science
PublisherSissa Medialab Srl

Conference

Conference37th International Cosmic Ray Conference, ICRC 2021
Country/TerritoryGermany
CityVirtual, Berlin
Period12/7/2123/7/21

Bibliographical note

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'CTA sensitivity for probing cosmology and fundamental physics with gamma rays'. Together they form a unique fingerprint.

Cite this