Abstract
The thermochromic, photochromic, and electrochromic properties of molybdenum trioxide (MoO3) thin films were studied. MoO3 thin films were deposited by rf reactive magnetron sputtering and the influence of deposition parameters, i.e. O2/Ar gas ratio and working pressure, on the chromogenic properties was investigated. Thermochromism was induced by annealing the samples in either air or argon in the range 23–300 °C for 2 h. We found that the highest response was obtained for samples grown at 5.3 × 10−1 Pa, although films annealed in air showed a maximum coloration around 250 °C that became bleached above this temperature. As for the annealing in argon, the thermochromic effect increased even at 300 °C. By exposing samples to UV irradiation in air, photochromism could be induced for different intervals ranging from 0 to 3 h. The highest photochromic response was obtained for samples deposited at 1.3 Pa. Cyclic voltammetry for 20 cycles in a 1 M LiClO4 in propylene carbonate solution, inside a glovebox filled with argon, was used to evaluate the electrochromic response. Samples that showed optimum electrochromic response were deposited at 1.6 Pa. These results are explained in terms of the optical, structural, surface chemical composition, and vibrational modes.
Original language | English |
---|---|
Pages (from-to) | 15486-15495 |
Number of pages | 10 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 29 |
Issue number | 18 |
DOIs | |
Publication status | Published - 1 Sep 2018 |
Externally published | Yes |
Fingerprint
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering
Cite this
}
Chromogenic MoO3 thin films : thermo-, photo-, and electrochromic response to working pressure variation in rf reactive magnetron sputtering. / Martín, V. Cruz San; Morales-Luna, M.; García-Tinoco, P. E.; Pérez-González, M.; Arvizu, M. A.; Crotte-Ledesma, H.; Ponce-Mosso, M.; Tomás, S. A.
In: Journal of Materials Science: Materials in Electronics, Vol. 29, No. 18, 01.09.2018, p. 15486-15495.Research output: Contribution to journal › Article
TY - JOUR
T1 - Chromogenic MoO3 thin films
T2 - thermo-, photo-, and electrochromic response to working pressure variation in rf reactive magnetron sputtering
AU - Martín, V. Cruz San
AU - Morales-Luna, M.
AU - García-Tinoco, P. E.
AU - Pérez-González, M.
AU - Arvizu, M. A.
AU - Crotte-Ledesma, H.
AU - Ponce-Mosso, M.
AU - Tomás, S. A.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - The thermochromic, photochromic, and electrochromic properties of molybdenum trioxide (MoO3) thin films were studied. MoO3 thin films were deposited by rf reactive magnetron sputtering and the influence of deposition parameters, i.e. O2/Ar gas ratio and working pressure, on the chromogenic properties was investigated. Thermochromism was induced by annealing the samples in either air or argon in the range 23–300 °C for 2 h. We found that the highest response was obtained for samples grown at 5.3 × 10−1 Pa, although films annealed in air showed a maximum coloration around 250 °C that became bleached above this temperature. As for the annealing in argon, the thermochromic effect increased even at 300 °C. By exposing samples to UV irradiation in air, photochromism could be induced for different intervals ranging from 0 to 3 h. The highest photochromic response was obtained for samples deposited at 1.3 Pa. Cyclic voltammetry for 20 cycles in a 1 M LiClO4 in propylene carbonate solution, inside a glovebox filled with argon, was used to evaluate the electrochromic response. Samples that showed optimum electrochromic response were deposited at 1.6 Pa. These results are explained in terms of the optical, structural, surface chemical composition, and vibrational modes.
AB - The thermochromic, photochromic, and electrochromic properties of molybdenum trioxide (MoO3) thin films were studied. MoO3 thin films were deposited by rf reactive magnetron sputtering and the influence of deposition parameters, i.e. O2/Ar gas ratio and working pressure, on the chromogenic properties was investigated. Thermochromism was induced by annealing the samples in either air or argon in the range 23–300 °C for 2 h. We found that the highest response was obtained for samples grown at 5.3 × 10−1 Pa, although films annealed in air showed a maximum coloration around 250 °C that became bleached above this temperature. As for the annealing in argon, the thermochromic effect increased even at 300 °C. By exposing samples to UV irradiation in air, photochromism could be induced for different intervals ranging from 0 to 3 h. The highest photochromic response was obtained for samples deposited at 1.3 Pa. Cyclic voltammetry for 20 cycles in a 1 M LiClO4 in propylene carbonate solution, inside a glovebox filled with argon, was used to evaluate the electrochromic response. Samples that showed optimum electrochromic response were deposited at 1.6 Pa. These results are explained in terms of the optical, structural, surface chemical composition, and vibrational modes.
UR - http://www.scopus.com/inward/record.url?scp=85045427514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045427514&partnerID=8YFLogxK
U2 - 10.1007/s10854-018-9101-5
DO - 10.1007/s10854-018-9101-5
M3 - Article
AN - SCOPUS:85045427514
VL - 29
SP - 15486
EP - 15495
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
SN - 0957-4522
IS - 18
ER -