Astrometry of Iapetus, Ariel, Umbriel, and Titania from eclipses and occultations

Anthony Mallama, Mitsuru Sôma, Pedro V. Sada, Robert J. Modic, Chad K. Ellington

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.
Original languageEnglish
Pages (from-to)265-270
JournalIcarus
Volume200
Issue number1
DOIs
Publication statusPublished - 1 Mar 2009
Externally publishedYes

Fingerprint

Umbriel
Ariel
Iapetus
Titania
astrometry
occultation
eclipses
titanium
ephemerides
natural satellites
photometry
planets
Oberon
planet
planetary satellite
refracted waves
Saturn
prediction
predictions
Moon

Cite this

Mallama, Anthony ; Sôma, Mitsuru ; Sada, Pedro V. ; Modic, Robert J. ; Ellington, Chad K. / Astrometry of Iapetus, Ariel, Umbriel, and Titania from eclipses and occultations. In: Icarus. 2009 ; Vol. 200, No. 1. pp. 265-270.
@article{d388e5d925f7469bb4bde947662b49d9,
title = "Astrometry of Iapetus, Ariel, Umbriel, and Titania from eclipses and occultations",
abstract = "Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.",
author = "Anthony Mallama and Mitsuru S{\^o}ma and Sada, {Pedro V.} and Modic, {Robert J.} and Ellington, {Chad K.}",
year = "2009",
month = "3",
day = "1",
doi = "10.1016/j.icarus.2008.11.022",
language = "English",
volume = "200",
pages = "265--270",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",
number = "1",

}

Astrometry of Iapetus, Ariel, Umbriel, and Titania from eclipses and occultations. / Mallama, Anthony; Sôma, Mitsuru; Sada, Pedro V.; Modic, Robert J.; Ellington, Chad K.

In: Icarus, Vol. 200, No. 1, 01.03.2009, p. 265-270.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Astrometry of Iapetus, Ariel, Umbriel, and Titania from eclipses and occultations

AU - Mallama, Anthony

AU - Sôma, Mitsuru

AU - Sada, Pedro V.

AU - Modic, Robert J.

AU - Ellington, Chad K.

PY - 2009/3/1

Y1 - 2009/3/1

N2 - Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.

AB - Highly accurate astrometric positions obtained from eclipses and occultations of planetary satellites are reported. These measurements may be used to test existing ephemerides, to improve upon them, and to fit system constants such as satellite masses and planetary zonal harmonics. Eclipse and occultation photometry of 5 uranian satellite mutual events has resulted in precise astrometry for 3 of these moons. Relative satellite positions were determined with an uncertainty of less than 10 milli-arcseconds for 4 of the events. These observations plus two additional data from C. Miller and N.J. Chanover (private communication) indicate that predictions based on the SPICE [Acton, C.H., 1996. Planet. Space Sci. 44, 65-70] ephemeris URA083 and those from the LA06 ephemeris in a paper by Arlot et al. [Arlot, J.-E., Lainey, V., Thuillot, W., 2006. Astron. Astrophys. 456, 1173-1179] are significantly more accurate than predictions generated by Christou [Christou, A.A., 2005. Icarus 178, 171-178] using the GUST86 ephemeris in the along-track component of motion. The observations indicate that Ariel, Umbriel and Titania are lagging behind their predicted positions for all of the ephemerides, but by varying distances and significance levels. Analysis of data recorded by Hidas et al. [Hidas, M.G., Christou, A.A., Brown, T.M., 2008. Mon. Not. R. Astron. Soc. 384, L38-L40] suggests a similar lag for Oberon. Photometry recorded during the ingress portion of a saturnian eclipse of Iapetus on 2007 May 5 indicates that the middle of the event occurred at geocentric UTC 02:14:58. At that moment the center of the satellite disk facing the Sun was intersected by a solar-centered ray refracted at a minimum altitude of 240 km above the 1-bar pressure level in the planet's atmosphere. The uncertainty in the timings due to observational scatter was only 5 s which equates to 16 km of Iapetus motion, but other factors increased the overall uncertainty to 111 km or 16 milli-arcseconds at the distance of Saturn from the Sun. The astrometric result is fit very well by the SPICE ephemeris SAT288.

U2 - 10.1016/j.icarus.2008.11.022

DO - 10.1016/j.icarus.2008.11.022

M3 - Article

VL - 200

SP - 265

EP - 270

JO - Icarus

JF - Icarus

SN - 0019-1035

IS - 1

ER -