Análisis de Datos COVID-19 Utilizando Algoritmos de Inteligencia Artificial

A. Elda Y. Martinez-Escobar, B. Jose M. Celaya-Padilla, Antonio Martinez-Torteya, C. Ireri A. Sustaita-Torres, Manuel A. Murillo-Soto, Jorge I. Galvan-Tejada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The COVID-19 pandemic has markedly catalyzed the advancement of innovative tools. With the aim of crafting resilient predictive models, an extensive training process has been executed to anticipate the risk of mortality or survival associated with the categories of moderate/severe hospitalization and critical patient cases.

Original languageEnglish
Title of host publication2023 IEEE EMBS R9 Conference, EMBS R9 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350381092
DOIs
Publication statusPublished - 2023
Event2023 IEEE EMBS R9 Conference, EMBS R9 2023 - Guadalajara, Mexico
Duration: 5 Oct 20237 Oct 2023

Publication series

Name2023 IEEE EMBS R9 Conference, EMBS R9 2023

Conference

Conference2023 IEEE EMBS R9 Conference, EMBS R9 2023
Country/TerritoryMexico
CityGuadalajara
Period5/10/237/10/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Media Technology
  • Control and Optimization
  • Modelling and Simulation
  • Health Informatics
  • Instrumentation

Fingerprint

Dive into the research topics of 'Análisis de Datos COVID-19 Utilizando Algoritmos de Inteligencia Artificial'. Together they form a unique fingerprint.

Cite this