Adaptive vibration control system for MR damper faults

Juan C. Tudón-Martínez, Ruben Morales-Menendez

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

© 2015 Juan C. Tudón-Martínez and Ruben Morales-Menendez. Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.
Original languageEnglish
JournalShock and Vibration
DOIs
Publication statusPublished - 1 Jan 2015
Externally publishedYes

Fingerprint

dampers
Vibration control
control system
vibration
Control systems
Automotive engineering
Controllers
Civil engineering
Fault tolerance
vehicles
comfort
Advanced Vidicon Camera System (AVCS)
roads
controllers
morale
road
fault tolerance
malfunctions
civil engineering
estimates

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Condensed Matter Physics
  • Geotechnical Engineering and Engineering Geology
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{0a85cacb227e4c3bb2c7ddb37a50be27,
title = "Adaptive vibration control system for MR damper faults",
abstract = "{\circledC} 2015 Juan C. Tud{\'o}n-Mart{\'i}nez and Ruben Morales-Menendez. Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24{\%} with respect to a controlled suspension without fault tolerance features.",
author = "Tud{\'o}n-Mart{\'i}nez, {Juan C.} and Ruben Morales-Menendez",
year = "2015",
month = "1",
day = "1",
doi = "10.1155/2015/163694",
language = "English",
journal = "Shock and Vibration",
issn = "1070-9622",
publisher = "IOS Press",

}

Adaptive vibration control system for MR damper faults. / Tudón-Martínez, Juan C.; Morales-Menendez, Ruben.

In: Shock and Vibration, 01.01.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Adaptive vibration control system for MR damper faults

AU - Tudón-Martínez, Juan C.

AU - Morales-Menendez, Ruben

PY - 2015/1/1

Y1 - 2015/1/1

N2 - © 2015 Juan C. Tudón-Martínez and Ruben Morales-Menendez. Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

AB - © 2015 Juan C. Tudón-Martínez and Ruben Morales-Menendez. Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

U2 - 10.1155/2015/163694

DO - 10.1155/2015/163694

M3 - Article

JO - Shock and Vibration

JF - Shock and Vibration

SN - 1070-9622

ER -